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We show that the qualitative picture of the phase diagranchvinicludes the non-uniform
chiral phase and 2SC superconducting phase is independéetapnsidered regularization
schemes. We also demonstrate that the quantitative regu#e with each other reasonably
for the set of so called "relativistic" regularization soies. On the other hand the "non-

relativistic" momentum cut-off is clearly differ from thehers.

I. INTRODUCTION

The phase diagram of strongly interacting matter is in thetereof scientific interest for many
decades. During the last decade there was a great progasainderstanding of this subject which was
based on the simple observation that Cooper instabilitygagdhptotic freedom jointly lead to the colour
superconductivity phenomenon at asymptotically high ik ]. However, at moderate densities our
knowledge is still limited to the model dependent calcolasi. A variety of phases are possible which
is a direct consequence of the richness of strong (and cttineeak) interactions between elementary
constituents of matter. In particular, the high symmetryugs involved in the description allow the
existence of many different types of phases. Of speciatesteare non-uniform phases. Among those,
the LOFF phases of superconductivity [2], Overhauser efjor non-uniform chiral condensates [4]
are very good examples.

In this paper, we ask the technical but important questiothefregularization dependence of the
phase diagram of strongly interacting matter which comstéiite non-uniform chiral condensate. This
drawback is inferred by the fact that the NJL model descglstiong interactions is an effective non-
renormalizable approximation. Then different regulai@aschemes lead, in a sense, to different mod-
els. Itis important to check if qualitative results are ipediedent of the regularization scheme, and what
is their dependence at the quantitative level.

We consider the phase diagram at finite density which induderal uniform and non-uniform
phases, superconducting 2SC phase and plasma of the frdes ¢iila Herein we checked the phase
diagram within the Nambu - Jona-Lasinio model against famous schemes, namely 3- and 4-dim

cut-off, Schwinger and Pauli-Villars regularization. $lem analysis was performed in the case of single
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non-uniform chiral phase irH[G]. As the main result we confilrat the non-uniform phase exists in all
considered regularization schemes.

We expect that the most important differences emerge attearperature thus we consider only this
situation. At higher temperature, the major role would kayptl by the finite temperature corrections.

However, inclusion of those is outside the scope of our paper

[I. MODEL

The starting point is based on the Nambu - Jona-Lasinio maitleltwo flavours B7]

H= /X { DY’y + yo)W + G [(BW)? + (Piystw)?] + G (PeiysToA ) (Lﬁiy5r2)\Ach)} 1)

wherey is the quark field, = CQ" is the conjugate field andis the quark chemical potential. The
color, flavor and spinor indices are suppressed. The v&dtothe isospin vector of Pauli matrices and
M, A= 2,57 are three color antisymmeti&J(3) group generators. The integratifin= fOB dt [ d3x,
wheref is the inverse temperature and derivative operafct (o, ﬁ). Two coupling constants, G/
describe interactions which are responsible for the ayeaif quark-antiquark and quark-quark conden-
sates respectively. Both couplings are treated as indepéndhere is also an additional parameter
which defines the energy scale below which the effectiverthapplies. It is introduced through the
regularization procedure.

We are working in the mean field approximation within the am&]

A

M —
(Py) = ——COSQ X, (Qiyst?yP) = _%6a33|nq X, (WA CysW) = 2—G,5A2 2)

which describes three possible phases: the chiral uniférase{ = 0,M # 0,A = 0), the non-uniform
chiral phased # 0,M # 0,A = 0) and the superconducting phage{0,M = 0,A # 0). All mentioned
phases can coexist with each other. Using standard metimedsam calculate the thermodynamic po-

tential [5,.7]
LB s S o
20 4G+4G’ 22, Jeou 23 22 | o (Bt LB
Efe= \/(p:t Es)2+|A]2, Ex = \/R2+M2+qz + \/(q-k’)2+M2q2 (3)

where the limit of zero temperature was already performeuk [ast integral is divergent. Before we
introduce different regularization schemes let us conggttation [(B) into another form which much

better suits our purposes and better underlines the phyfsilee problem. To reach our goal we translate



equation[(B) into another form

AP o d3k
Q:4G+%_ ZE/ ( Els 2ES>+4Z/ Efo—Ef5°)
d3k en d*

2 ZE/ESql 2m)3 ZE/ ° Zk/ v
Sy = \/(u:I:Eo)2+|A|2, Eo— /K2 + M2, 4)

The first three integrals give finite contributions and oriig tast two are divergent. Let us note that

in the absence of superconducting state the next to thedamst\anishes and the only divergent con-
tribution follows from the infinite Dirac sea integral. Adidinally the last two integrals are separately
dependent, the first one dnand the other one on wave vectrThis separation is very convenient for

the regularization procedure.

[Il. REGULARIZATION SCHEMESAND PARAMETERS

In the first step we expand the last term of equatidn (4) in pswé the wave vectog. It is well
known that the parameter at the second order is related fmdhealecay constant/[4]

d% Bk M2f2g2
6 Z[/ —12/(2T[)3E0+ e (5)

whereMp is constituent quark mass at zero density. The formula fempibn decay constant depends
on the regularization and is known from the earlier literat(e.g. [8]). This formula together with
expressions for the chiral condensate fixes the valué ahd A parameters (Table 1). More details
are discussed in the Appendix A. The coupling cons@n¢tannot be related to any known physical
guantity. In the vast literature of color supercoductivitg value is emplaced somewhere between
G/2<G <£3G/2.

3b 4D S PV

A 0.6351.015 1.086 1.12
GA? 2.2 3.93 3.78 4.47
Mo 0.33 0.238 0.2 0.22

TABLE |: Numerical values of the regularization parametén GeV and dimensionless quant®A? for different

regularization schemes. In the last row, the value of thelgc@nstituent mass at zero dendifls is given in GeV.



Taking into account equatiohl(5) one can extract the divergart of thermodynamic potentiall (4) in

d3k _ 3k
Qqy=-4y / ES—E50) —12 / i (6)

We consider four types of different regularlzatlon sche

the form

e 3-dim cut-off (3D) A restricts the value of three dimensional momentum. Thelagiged poten-

tial takes the form
A d3k A d3k
P — 42/ E4,— EAS 12/ B 7)

This regularization was frequently used in previous papegsB].

e 4-dim cut-off (4D) restricts the value of four-momentum vector in Euclideaacgp Using the

d®k [ d%e, KE+A?
/W(A—B)_/(zn)4lnkg+82

we introduce the cut-off parameter to the thermodynamiemigdl through the equation

formulae

d|v

Aal“kE ko+ 3 (3i—+ Efp)? A dke
8/ e o —12/ Wln(k%+E§), ®)

whered?*kg = dkyd3k.

e Schwinger regularization (S) is based on the formula

In— / [exp(t(B+ig)) —exp(t(A+ig))].

This leads us to the regularized expression for the potentia
d*ke dt , 1 A2
lev - 8/ (21'[) a2 T {eXp [T <_k0_ Z(i:ziEi,O)

) p[ (ko<2>>”

B 12/ ke [* el (-G-E3)]). (©)

4 Jyne 1
This regularization was considered EL [9] where only theggEmon-uniform chiral phase was

taken into account.

e Pauli-Villarsregularization (PV) introduces an arbitrary number of coupling const&hsnd

mass regulator, combine in such a way that divergent potentidl (6) becomete finin the



first step we regularized potential by the 3-dim cut-off amehtexpand the result around the large
value of the parametéY. The values of coupling constarilg, M, are already set by the conditions
which follows from the calculation of the chiral condensétep) and pion decay constant (the

appendix). Then final expression for the thermodynamicmi@kin this scheme reads

|\/|2 |A\ M2+|A\2
PV _ 4n S = (B0 a2
|A ) |v|2+| \2 M2+\A|2 M2
— MiIn ———— 7—In— 10
+ ZC“ mz+jap "t n2 Z CaMa \ NGz jae ""mz ) (10
whereC,, M, are given by equations (113) in the appendix.
IV. RESULTS
We minimize the thermodynamic potential
M2 |A|2 M2Ffg® dk Kk /_p a0
Q= —— f—2Es | +4 — (EA —EAF
G Tae T 2M3 Z[/ ) i_zi/(znﬁ( 00 )
2 ———5(Es— 1)+ Qg™ 11
©23 . ol W 0 )

with respect to mashkl, wave vectold| and gap parametér as a function of chemical potential. The
last term of [(11l) depends on the scheme as was described pnetieus section. Appropriate formule
for QS¢hemeare given by equationEl(7, [8,[9.110).

As already discusse@, /A coupling constants are determined by the values of the peoaydcon-
stant and the size of the chiral condensate at zero densibigT). The remaining constaf is es-
sentially unknown. For the presentation of the result weimesG’' = 0.75G which follows from the
Fierz transformation [10]. The choice of another r&@G does not influence our analysis of the result
dependence on regularization schemes. The values of t@rgtmass, wave vector and gap parameter
as a function of chemical potential for different regulatian schemes are given in figures 1 - 3. As can
be seen in all regularization schemes, there is the samerpait the phase transitions. From uniform
to non-uniform chiral phase and then to superconductingg@hall transitions are first order and exis-
tence of non-uniform phase is then independent of the ceraildegularization schemes. However, the
strengths of the transition depend on the regularizatiberse. This is particularly visible in Fig. 3.

Some quantitative features change with the chosen scheme.c&h find that schemes cluster in
two groups which one can call "relativistic" schemes (4DP$) and 3D cut-off. However, let us note

that the distinction between relativistic and non-relatic schemes has no deep meaning because the
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FIG. 1: The constituent ma$4 as a function of chemical potentiglin different regularization schemes in MeV

units.

thermodynamic system singles out one reference frame. @ongthe quantitative results, we consider
values of constituent mass, wave vector, gap parametesirémegths of the first order phase transitions
and critical chemical potential. The position of the traéiosi from uniform chiral to nonuniform chiral
phase is the most resistant against the choice of the rézatian scheme. First critical potential changes
within the range of 5 per cent for relativistic schemes, whil the case of 3D within 18 per cent.
The position of the second transition, for relativistic setes changes within the range of 19 per cent,
including 3D cut-off within 34 per cent. For 4D, S, PV scherttesrange of variability of the parameter
M value is about 20 per centjaequal to zero, and about 60 per cent at chemical potentiaissponding
with first transition. The range of variability of parametpvalue is 50 per cent at chemical potentials
corresponding with first transition. Comparing M and g atosetctransition is unsuitable because of
changeability of second critical potential. The dependerficthe parameters M and g on the chemical
potential is the same for the different regularizationstiAficreasing chemical potential, the value of q
is growing, the M value is declining. Relatively the leastretated is the dependence of the parameter
A on the regularization scheme. However, again the valuesodépA is increasing withy, independent

of the regularization choice. The values of the criticalroiel potentials of the phase transitions are

given in Table II.
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FIG. 2: The value of the wave vectgras a function of the chemical potentjalin the different regularization
schemes in MeV units. The values jpffor non-zeroqg describe the range of the existence of the non-uniform

chiral phase.

He 3b 4D S PV

Ch/NCH 0.311 0.274 0.263 0.268
NCH/2SC 0.373 0.330 0.296 0.281

TABLE II: Numerical values of the critical chemical poteals p. in MeV for uniform and non-uniform chiral
phase transition (Ch/NCH) and non-uniform chiral and sopeducting phase transition (NCH/2SC) for different
regularization schemes. In 3D, 4D, S schemes the 2SC phpsaraglready at Ch/NCh phase transition and both
phases coexist. However, the value of the gap parametelais/ety low in the coexistence region. In the PV

scheme, 2SC phase appears only at the NCh/2SC phase dransiti

Strengths of phase transitions depend on the regulanzatibeme. The strongest phase transitions
are in 3D cut-off, the weakest in the Schwinger proper tingeil@ization. In the case of the transition

to the 2SC phase the jump of the gap ranges from 28 MeV for 3Bffud 1 MeV for Schwinger



regularization. There is still a possibility of the coeriste between chiral and superconducting phase.
It occurs in all schemes with the exception of Pauli - Villafsy conclusion which follows from this
phenomenon is thus model dependent. Finally, let us notdtiagphase diagram depends also on the
value of G'. Its influence is the same for all regularization scheme® l&@tger value of5', the shorter
the range of non-uniform chiral phase.

This behavior is understandable because la@jatrengthens diquark interaction which dominates
over quark - antiquark interaction. Only in the Pauli - idfascheme, the non-uniform chiral phase
vanishes foG' = 0.83G, and the phase transition to superconducting phase-41.26 GeV takes place
directly from the uniform chiral phase.However, this vatii¢he critical chemical potential is rather low

which gquestions the physical sensibility to &t= 0.83G in PV scheme.

V. CONCLUSIONS

We perform the analysis of the phase diagram of stronglyacteng matter in the Nambu - Jona-
Lasinio model which includes non-uniform chiral phase andesconducting 2SC phase in different

regularization schemes. We confirm that the qualitativeufea of the phase diagram is independent
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FIG. 3: The gap parametéy as a function of chemical potentiglin different regularization schemes in MeV

units.



* +* * +*
*
+ *
L 0’
00 -
150 | A [MeY]
*
L +
oo - +  M[MWeV] +
i *
+
L *
50 C . q [MeV] * - . n =
. - .II

EES 50 ET5 200 2ES 250 278

FIG. 4: The phase diagram at one plot in 4D cut-off reguldionaschemes (in MeV units).

of considered regularization schemes. The generic phaggain is shown in Fig. 4 (in 4D cut-off
regularization).

The quantitative results (values of constituent mass, waeeor, critical chemical potential) match
satisfactorily within "relativistic" schemes. Only remibbtained with 3D cut-off differ widely from
the others. Unfortunately, there is no general argumenthviicheme better suits the task of the phase
diagram analysis. Neither the relativistic approach (tratynamic systems single out prefered refer-
ence frame) nor gauge independence (the NJL model is notgegheory) favor any scheme in the
present considerations. Additionally, the gap paramitas well as the magnitude of the jump in the
gap parameter shows the clear dependence on the choicereffliarization scheme. The differences
appear not only between the "relativistic" and 3D cut-off&ames but also within the set of "relativistic"
regularizations. These findings tell us that one can set #gmitude of the gap parameter in the MeV
scale but its precise value in the large extand is an unknawvantity. From the other hand the general
gualitative pattern that the gap parameter increases nitteasing value of the chemical potentiab
independent on the choice of the regularization scheme.

The size of the non-uniform phase depends on the relatigagitn ofG' andG coupling constants.
The largerG’ constant the shorter range of the non-uniform phase. Thislgsion is also independent
of the regularization scheme.

Finally, we find that in the Pauli - Villars scheme, in contrimsthe other schemes, there is no coexis-



10

tence region of the non-uniform and 2SC phases. Thus suaixéstence remains an open question. Let
us stress at the end that our analysis does not prove thabthemform chiral phase exists. However, it
shows that the main features of the phase diagram whichdaslnon-uniform phase are robust against
the choice of the regularization schemes.

VI. APPENDIX A

Two parameters of the NJL mod& (A\) are fixed by two physical quantities: the pion decay coristan
fr =93 MeV, and the quark condensate densily) = <d_d> =-(250 MeV). These quantities are
functions ofMg and/\, and can be calculated in the framework of the NJL model, asdeae in|[3].
Alternatively one can use the decay consg@ytor thep — 2mprocess instead of the quark condensate
value, proposed irmu. Now using the self-consistencyddion, Mg = —4G (uu), that linksG andA
with Mg, we get values o6 andA.

In different regularization schemes, one has

e 3D cut-off . 2
_ AN dk 1 AN dk 1
= —6My [ —=—, f2= |v|2/ .
(uu 6 o/ 2m3E, ™ 3Mg (2m)°E3
e 4D cut-off
_ Nd%ke 1 A d*kg 1
:-12|v|/ S f2:12|v|2/ .
<UU> 0 (2_,_[)4 E§+k% T 0 (2].[)4 (E§+k%)2
e Schwinger
—. 3 © dt 2 g2 3 .o [® dT 2
(uu) = _4—1T2M0/1//\2T8Xp[_TM0]’ fr= 4—]T2M0 A/AZTexq—TMO].

e Pauli-Villars
_ 3 3 5 [M? , 3 |3 M?2
(uuy = HMo{qzlco(Mo(ln {M—g} }, fe= HM0 azlcq In {M—g]
with three conditions impose on regularization parameters
3 3 3
1+ Y Ca=0, M2+ZCGM2:O, M4+zc(1|v|4:o. (12)
a=1 a=1 a=1

Conditions[(1R) are solved by the formulae:

Ci=-3C=3C=-1 M?=M24+A% M5=M24+2A%2 M3=M2+3A2  (13)
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The values ofG, A\ for each regularization scheme are given in Table 1.
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